Part Number Hot Search : 
CF739 32N10 NTE4919 TC232MJE MMDF2P0 G1432Q5U BT2222 AD790
Product Description
Full Text Search
 

To Download LTC1382 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LTC1382 5V Low Power RS232 Transceiver with Shutdown
FEATURES
s s s s s s s
DESCRIPTIO
s
s
Operates from a Single 5V Supply Low Supply Current: ICC = 220A ICC = 0.2A in Shutdown Mode ESD Protection Over 10kV Uses Small Capacitors: 0.1F Operates to 120kBaud Output Overvoltage Does Not Force Current Back into Supplies RS232 I/O Lines Can Be Forced to 25V Without Damage Pin Compatible with LT1180A
The LTC1382 is an ultra-low power 2-driver/2-receiver RS232 transceiver that operates from a single 5V supply. The charge pump requires only four spacesaving 0.1F capacitors. The transceiver operates in one of two modes, Normal and Shutdown. In the Normal mode, ICC is only 220A with the driver outputs unloaded. In the Shutdown mode, the charge pump is turned off, the driver outputs are forced into three-state, both receivers are off and ICC drops to 0.2A. The LTC1382 is fully compliant with all data rate and overvoltage RS232 specifications. The transceiver can operate up to 120kbaud with a 2500pF, 3k load. Both driver outputs and receiver inputs can be forced to 25V without damage and can survive multiple 10kV ESD strikes.
APPLICATI
s s
S
Notebook Computers Palmtop Computers
TYPICAL APPLICATI
2-Drivers/2-Receivers with Shutdown
2 0.1F 4 5 0.1F 6 12 VCC 300k LOGIC INPUT LOGIC OUTPUT 11 13 5k 8 14 232 OUTPUT 232 INPUT LTC1382 VCC 300k 15 17 3 7 0.1F 0.1F
QUIESCENT CURRENT (A)
Quiescent and Shutdown Supply Current vs Temperature
600 1.2 TEST CONDITION: VCC = 5V 500 400 300 200 100 0 -20 SHUTDOWN CURRENT QUIESCENT CURRENT 1.0
SHUTDOWN CURRENT (A)
VCC = 5V
LOGIC INPUT
232 OUTPUT
0
LOGIC OUTPUT ON/OFF
10 18 5k
9 16
232 INPUT
LTC1382 * TA01
U
0.8 0.6 0.4 0.2 0 20 40 TEMPERATURE (C) 60 80
LTC1382 * TA02
UO
UO
1
LTC1382 ABSOLUTE AXI U RATI GS
PACKAGE/ORDER I FOR ATIO
TOP VIEW NC C1+ V+ C1- C2+ C2 - V- TR2 OUT RX2 IN 1 2 3 4 5 6 7 8 9 18 ON/OFF 17 VCC 16 GND 15 TR1 OUT 14 RX1 IN 13 RX1 OUT 12 TR1 IN 11 TR2 IN 10 RX2 OUT
Supply Voltage (VCC) ................................................ 6V Input Voltage Driver ....................................... - 0.3V to V CC + 0.3V Receiver ............................................... - 25V to 25V Digital Input ............................... - 0.3V to VCC + 0.3V Output Voltage Driver .................................................... - 25V to 25V Receiver .................................... - 0.3V to VCC + 0.3V Short-Circuit Duration V + ................................................................... 30 sec V - ................................................................... 30 sec Driver Output .............................................. Indefinite Receiver Output .......................................... Indefinite Operating Temperature Range .................... 0C to 70C Storage Temperature Range ................ - 65C to 150C Lead Temperature (Soldering, 10 sec)................. 300C
ORDER PART NUMBER LTC1382CN LTC1382CS
S PACKAGE N PACKAGE 18-LEAD PLASTIC DIP 18-LEAD PLASTIC SOL
TJMAX = 125C, JA = 56C/W (N) TJMAX = 125C, JA = 85C/W (S)
Consult factory for Industrial and Military grade parts.
DC ELECTRICAL CHARACTERISTICS
VCC = 5V, C1 = C2 = C3 = C4 = 0.1F, VON/OFF = VCC unless otherwise noted.
PARAMETER Any Driver Output Voltage Swing Logic Input Voltage Level Logic Input Current Output Short-Circuit Current Output Leakage Current Any Receiver Input Voltage Thresholds Hysteresis Input Resistance Output Voltage Output Short-Circuit Current Output Leakage Current CONDITIONS 3k to GND Positive Negative
q q q q q q q q q q
MIN 5.0 - 5.0 2.0
TYP 7.0 - 6.5 1.4 1.4 - 20 12 10
MAX
UNITS V V V V A A mA A V V V k V V mA mA A
Input Low Level (VOUT = High) Input High Level (VOUT = Low) VIN = VCC VIN = 0V VOUT = 0V Shutdown or VCC = 0V (Note 3), VOUT = 20V Input Low Threshold Input High Threshold - 10V VIN 10V Output Low, IOUT = - 1.6mA (VCC = 5V) Output High, IOUT = 160A (VCC = 5V) Sinking Current, VOUT = VCC Sourcing Current VOUT = 0V Shutdown (Note 3), 0V VOUT VCC
0.8 5 - 40 500
0.8 0.1 3 3.0 - 15 10
q q
q
1.3 1.7 0.4 5 0.2 3.2 - 40 20 1
2.4 1 7 0.4
10
2
U
W
U
U
WW
W
LTC1382
DC ELECTRICAL CHARACTERISTICS
VCC = 5V, C1 = C2 = C3 = C4 = 0.1F, VON/OFF = VCC, unless otherwise noted.
PARAMETER Power Supply Generator V + Output Voltage V - Output Voltage Supply Rise Time Power Supply VCC Supply Current Supply Leakage Current (VCC) Digital Input Threshold Low Digital Input Threshold High CONDITIONS IOUT = 0mA IOUT = 8mA IOUT = 0mA IOUT = - 8mA Shutdown to Turn-On No Load (Note 2) Shutdown (Note 3)
q q q q
MIN
TYP 8.0 7.5 - 8.0 - 7.0 0.2 0.22 0.2 1.4 1.4
MAX
UNITS V V V V ms
0.5 10 0.8
2.0
mA A V V
AC CHARACTERISTICS
VCC = 5V, C1 = C2 = C3 = C4 = 0.1F, unless otherwise noted.
PARAMETER Slew Rate Driver Propagation Delay (TTL to RS232) Receiver Propagation Delay (RS232 to TTL) CONDITIONS RL = 3k, CL = 51pF RL = 3k, CL = 2500pF t HLD (Figure 1) t LHD (Figure 1) t HLR (Figure 2) t LHR (Figure 2) MIN 3
q q q q
TYP 8 5 2 2 0.3 0.3
MAX 30 3.5 3.5 0.8 0.8
UNITS V/s V/s s s s s
The q denotes specifications which apply over the operating temperature range of 0C TA 70C. Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: Supply current is measured with driver and receiver outputs unloaded. Note 3: Measurements made in the Shutdown mode are performed with VON/OFF = 0V.
TYPICAL PERFORMANCE CHARACTERISTICS
Driver Output Voltage vs Temperature
10 8
RL = 3k
OUTPUT HIGH VCC = 5V THRESHOLD VOLTAGE (V) VCC = 4.5V
DRIVER OUTPUT VOLTAGE (V)
4 2 0 -2 -4 -6 -8 0 10 20 30 40 50 TEMPERATURE (C) 60 70 OUTPUT LOW VCC = 4.5V VCC = 5V
1.8 1.6 1.4 1.2 VTL
SUPPLY CURRENT (mA)
6
LTC1382 * TPC01
UW
Receiver Input Thresholds vs Temperature
2.2 2.0 VTH
35 30 25 20 15 10 5 45 40
Supply Current vs Data Rate
VCC = 5V RL = 3k CL = 2500pF 2 DRIVERS ACTIVE
1.0 0 10 40 30 50 20 TEMPERATURE (C) 60 70
0 0 25 50 75 100 125 DATA RATE (kBAUD) 150 175
LTC1382 * TPC02
LTC1382 * TPC03
3
LTC1382 TYPICAL PERFORMANCE CHARACTERISTICS
VCC Supply Current vs Temperature
18 16
SHORT-CIRCUIT CURRENT (mA)
SUPPLY CURRENT (mA)
14 12 10 8 6 4 2 0 0 10 20 30 40 50 TEMPERATURE (C) 60 70 1 DRIVER LOADED RL = 3k 2 DRIVERS LOADED RL = 3k
14 12 10 8 6 4 2 0 0
ISC- ISC+
SHORT-CIRCUIT CURRENT (mA)
LTC1382 * TPC04
Driver Leakage in Shutdown vs Temperature
45 40
LEAKAGE CURRENT (A)
35 30 25 20 15 10 5 0 0 10 30 20 40 50 TEMPERATURE (C) 60 70 VOUT = 20V VOUT = -20V
LTC1349 * TPC05
4
UW
Driver Short-Circuit Current vs Temperature
18 16
Receiver Short-Circuit Current vs Temperature
50
40
ISC-
30
20
ISC+
10
10 20 30 50 40 TEMPERATURE (C) 60 70
0
10
30 20 50 40 TEMPERATURE (C)
60
70
LTC1382 * TPC05
LTC1382 * TPC06
Driver Output Waveforms
DRIVER OUTPUT RL = 3k CL = 2500pF DRIVER OUTPUT RL = 3k INPUT
Receiver Output Waveforms
RECEIVER OUTPUT CL = 51pF
INPUT
LTC1382 * TPC08
LTC1382 * TPC09
LTC1382
PI FU CTIO S
VCC: 5V Input Supply Pin. This pin should be decoupled with a 0.1F ceramic capacitor. GND: Ground Pin. ON/OFF: TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in the Shutdown mode. Both driver outputs are forced into three-state and the supply current is 0.2A. V +: Positive Supply Output (RS232 Drivers). V + 2VCC - 2V. This pin requires an external capacitor C = 0.1F for charge storage. The capacitor may be tied to ground or VCC. With multiple devices, the V + and V - pins may share a common capacitor. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple. V -: Negative Supply Output (RS232 Drivers). V - - (2VCC - 2V). This pin requires an external capacitor C = 0.1F for charge storage. C1+, C1-, C2+, C2-: Commutating Capacitor Inputs. These pins require two external capacitors C = 0.1F: one from C1+ to C1- and another from C2+ to C2 -. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 2. TR IN: RS232 Driver Input Pins. Inputs are TTL/CMOS compatible. The inputs of unused drivers can be left unconnected since 300k input pull-up resistors to VCC are included on chip. To minimize power consumption, the internal driver pull-up resistors are disconnected from VCC in the Shutdown mode. TR OUT: Driver Outputs at RS232 Voltage Levels. Outputs are in a high impedance state when in the Shutdown or VCC = 0V. The driver outputs are protected against ESD to 10kV for human body model discharges. RX IN: Receiver Inputs. These pins can be forced to 25V without damage. The receiver inputs are protected against ESD to 10kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity. RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. Outputs are in a high impedance state when in the Shutdown mode.
SWITCHI G TI E WAVEFOR S
DRIVER INPUT DRIVER OUTPUT t LHD VCC 1.4V 1.4V 0V V+ 0V t HLD
LTC1382 * F01
Figure 1. Driver Propagation Delay Timing
W
W
U
U
U
U
RX INPUT RX OUTPUT t LHR
1.7V
VCC 1.3V 0V 2.4V VCC 0V
LTC1382 * F02
0V
V-
0.8V t HLR
Figure 2. Receiver Propagation Delay Timing
5
LTC1382 TEST CIRCUITS
Driver Timing Test Load Receiver Timing Test Load
DRIVER INPUT
DRIVER OUTPUT DRIVER 51pF 3k
RX OUTPUT RX INPUT RX 51pF
LTC1382 * TA04
LTC1382 * TA03
ESD Test Circuit
2 0.1F 4 5 0.1F 6 12 VCC 300k LOGIC INPUT LOGIC OUTPUT 11 13 5k 8 14 232 OUTPUT 232 INPUT RS232 LINE PINS PROTECTED TO 10kV LTC1382 VCC 300k 15 17 3 7 0.1F 0.1F VCC = 5V
LOGIC INPUT
232 OUTPUT
LOGIC OUTPUT ON/OFF
10 18 5k
9 16
232 INPUT
LTC1382 * TA04
6
LTC1382
PACKAGE DESCRIPTION U
Dimensions in inches (millimeters) unless otherwise noted. N Package 18-Lead Plastic DIP
0.905 (22.860) MAX 18 17 16 15 14 13 12 11 10
0.260 0.010 (6.604 0.254)
1 0.300 - 0.325 (7.620 - 8.255) 0.130 0.005 (3.302 0.127)
2
3
4
5
6
7
8
9
0.045 - 0.065 (1.143 - 1.651)
0.009 - 0.015 (0.229 - 0.381)
0.015 (0.381) MIN
0.065 (1.651) TYP
(
+0.025 0.325 -0.015 8.255 +0.635 -0.381
)
0.125 (3.175) MIN
0.045 0.015 (1.143 0.381) 0.100 0.010 (2.540 0.254)
0.018 0.003 (0.457 0.076)
N18 0392
S Package 18-Lead Plastic SOL
0.447 - 0.463 (11.354 - 11.760) (NOTE 2) 18 17 16 15 14 13 12 11 10
SEE NOTE
0.394 - 0.419 (10.007 - 10.643)
0.005 (0.127) RAD MIN
0.291 - 0.299 (7.391 - 7.595) (NOTE 2) 0.010 - 0.029 x 45 (0.254 - 0.737)
1 0.093 - 0.104 (2.362 - 2.642)
2
3
4
5
6
7
8
9 0.037 - 0.045 (0.940 - 1.143)
0 - 8 TYP 0.050 (1.270) TYP
0.009 - 0.013 (0.229 - 0.330)
NOTE 1 0.016 - 0.050 (0.406 - 1.270)
0.004 - 0.012 (0.102 - 0.305)
NOTE: 1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS. 2. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).
0.014 - 0.019 (0.356 - 0.482) TYP
SOL18 0392
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
7
LTC1382
U.S. Area Sales Offices
NORTHEAST REGION Linear Technology Corporation One Oxford Valley 2300 E. Lincoln Hwy.,Suite 306 Langhorne, PA 19047 Phone: (215) 757-8578 FAX: (215) 757-5631 Linear Technology Corporation 266 Lowell St., Suite B-8 Wilmington, MA 01887 Phone: (508) 658-3881 FAX: (508) 658-2701 SOUTHEAST REGION Linear Technology Corporation 17060 Dallas Parkway Suite 208 Dallas, TX 75248 Phone: (214) 733-3071 FAX: (214) 380-5138 CENTRAL REGION Linear Technology Corporation Chesapeake Square 229 Mitchell Court, Suite A-25 Addison, IL 60101 Phone: (708) 620-6910 FAX: (708) 620-6977 SOUTHWEST REGION Linear Technology Corporation 22141 Ventura Blvd. Suite 206 Woodland Hills, CA 91364 Phone: (818) 703-0835 FAX: (818) 703-0517 NORTHWEST REGION Linear Technology Corporation 782 Sycamore Dr. Milpitas, CA 95035 Phone: (408) 428-2050 FAX: (408) 432-6331
International Sales Offices
FRANCE Linear Technology S.A.R.L. Immeuble "Le Quartz" 58 Chemin de la Justice 92290 Chatenay Malabry France Phone: 33-1-41079555 FAX: 33-1-46314613 GERMANY Linear Techonolgy GmbH Untere Hauptstr. 9 D-85386 Eching Germany Phone: 49-89-3197410 FAX: 49-89-3194821 JAPAN Linear Technology KK 5F YZ Bldg. 4-4-12 Iidabashi, Chiyoda-Ku Tokyo, 102 Japan Phone: 81-3-3237-7891 FAX: 81-3-3237-8010 KOREA Linear Technology Korea Branch Namsong Building, #505 Itaewon-Dong 260-199 Yongsan-Ku, Seoul Korea Phone: 82-2-792-1617 FAX: 82-2-792-1619 SINGAPORE Linear Technology Pte. Ltd. 101 Boon Keng Road #02-15 Kallang Ind. Estates Singapore 1233 Phone: 65-293-5322 FAX: 65-292-0398 TAIWAN Linear Technology Corporation Rm. 801, No. 46, Sec. 2 Chung Shan N. Rd. Taipei, Taiwan, R.O.C. Phone: 886-2-521-7575 FAX: 886-2-562-2285 UNITED KINGDOM Linear Technology (UK) Ltd. The Coliseum, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Phone: 44-276-677676 FAX: 44-276-64851
World Headquarters
Linear Technology Corporation 1630 McCarthy Blvd. Milpitas, CA 95035-7487 Phone: (408) 432-1900 FAX: (408) 434-0507
0294
8
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7487
(408) 432-1900 q FAX: (408) 434-0507 q TELEX: 499-3977
LT/GP 0594 10K * PRINTED IN USA
(c) LINEAR TECHNOLOGY CORPORATION 1994


▲Up To Search▲   

 
Price & Availability of LTC1382

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X